http://www.nessaya.com

                                                                  【网易彩票】TensorFlow产品总监:机器学习进步让AI应用成可能 - AI,人工智能,TensorFlow

                                                                  在2019世界人工智能大会期间,TensorFlow全球产品总监Kemal EI Moujahid在主题论坛环节发表演讲。Kemal表示,今天,人们思考、和计算机互动的方式发生了很大的改变。得益于人工智能,有些行业会发生根本性的改变,比如农业、医疗、教育。

                                                                  人工智能可以用来解决有挑战性的现实问题,例如:帮助农民监测作物(如全球5亿人口依靠的木薯)中的病虫害;协助海洋生物学家识别濒危物种;帮助医生诊断(疾病,如利用视网膜扫描技术诊断心血管疾病。

                                                                  Kemal在提到人工智能与机器学习的关系时表示,前者研究的是如何让机器更智能,帮人解决问题。而后者是人工智能的一个部分,人工智能是通过规则让机器变聪明,而机器学习是让机器自己去学习而变得更加智能。

                                                                  在演讲中,Kemal提出,机器学习领域的三大进步使得人工智]能的这些应用在今天成为可能。

                                                                  第一,数据变得更加普遍化和易获得。机器学习需要海量的数据,过去数据没有像现在这么充足,而现在甚至有很多免费的数据供给机器学习。各类学科中的各种数据集已成为机器学习系统的燃料,例如,Open Images Dataset就是一个由涵盖数千个类别的超过900万张图像组成的数据集。

                                                                  第二,计算能力取得了飞速进步。人工智能的发展需要非常充沛的算力,算力的发展目前呈现出指数级的增长。例如,Tensor Processing Units(TPUs),能在短短几分钟内而非几小时内,就训练完成机器学习模型。一套TPUs的计算能力是1990年的计算机的10000,倍。

                                                                  第三,以更快的速度构建更复杂的模型和技术。例如,在自然语言理解领域,研究人员正在取得令人难以置信的进展。

                                                                  “有了这三个最重要的要素,如何整合起来呢?答案就是TensorFlow。”

                                                                  K[emal表示,自2015年开源以来,TensorFlow已成长为一个灵活的机器学习框架,目前已到2.0阶段,)下载量4100万,提交次数5万+,代码改动请求(PR)9900+,贡献量1800+。

                                                                  TensorFlow2.0的特点是更容易去使用、易于掌握;功能更强大,能让每个人快速去做大量数据集数据的运算;可扩展,通过在谷歌全系统基础上进行测试,可部署在从小型设备到大型服务器的各类设备上。

                                                                  其中,随着TensorFlow社区在全球范围内扩展,可以帮助新接触机器学习的开发者学习利用TensorFlow去解决当地社区问题。

                                                                  比如空气质量监测,全球每年有420万人因为空气污染而丧生,而印度的空气污染问题尤其严重,在冬季,其空气质量指数可达到正常值的4倍。

                                                                  德里的一群学生就利用TensorFlow实现了一个成本低廉的空气质量监测解决方案。他们开发的AirCognizer应用程序,利用手机相机拍摄的照片进行实时空气质量评估,只需拍下一张天空的照片,便可得知空气质量指数。

                                                                  郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

                                                                  上一篇:爆料:任天堂下周或披露未来半年游戏阵容 - 任天堂
                                                                  下一篇:没有了